Lab 12: Complex Number's Geometry & Operations
Lab 12-1: Complex Number's Geometry (40%)
- 輸入:
- 以
char
格式輸入幾何圖形形狀,包含三角形 (t
)、四邊形 (q
)、多邊形 (p
)、圓形c
,一行輸入一個幾何圖形 - 以
unsigned int
格式輸入幾何圖形的頂點數,一行輸入一個正整數- 三角形:3
- 四邊形:4
- 多邊形:大於 3 的正整數
- 圓形:2
- 以
double
格式輸入組合幾何圖形的複數的實數及虛數部分,以空格分開,一行輸入一個複數 - 輸入幾何圖形形狀及頂點數後依據 2. 的頂點數接著輸入相對應的複數
- 三角形:連續輸入三個複數
- 四邊形:連續輸入四個複數
- 多邊形:連續輸入多個複數
- 圓形:連續輸入兩個複數
- 輸入 Ctrl+D 結束程式
- Windows 請輸入 Ctrl+Z (會在螢幕上顯示
^Z
) 再輸入 Enter (Format 中的⏎
) 完成輸入
- Windows 請輸入 Ctrl+Z (會在螢幕上顯示
- 以
- 輸出:
- 顯示紀錄幾何圖形的形狀、頂點個數及其複數
- 格式請參考 Format 中的說明
- 頂點順序與輸入順序相同
- 複數的格式為
(-)<real result> (+|-) (<imag result>i)
- 若虛數部分為 0 則僅顯示實數部分
- 若虛數部分小於 0 則中間的
+
要改成-
,並且虛數部分要顯示絕對值
- 虛數及實數部分皆以預設
double
格式顯示
- 顯示紀錄幾何圖形的形狀、頂點個數及其複數
- 檔名:
lab12-1_<學號>.cpp
(e.g.lab12-1_106062802.cpp
)
注意事項:
- 程式不會輸出任何使用者提示,只會輸出程式結果
- 使用者不需要處理錯誤輸入
- 請使用 pseudo code 提供的
main
function 來處理輸入與輸出 - 程式需要於 10 秒內完成,所有的測資皆會保證於 10 秒內完成
Format
<geometry type>⏎
n⏎
<real 1> <imag 1>⏎
<real 2> <imag 2>⏎
...
<real n> <imag n>⏎
<geometry type>
n
(-)<real 1> (+|-) (<imag 1>i)
(-)<real 2> (+|-) (<imag 2>i)
...
(-)<real n> (+|-) (<imag n>i)
^Z⏎
Example
Triangle
$ ./a.out
t⏎
3⏎
1.0 2.0⏎
3.0 4.0⏎
5.0 0.0⏎
t
3
1 + 2i
3 + 4i
5
^Z⏎
Quadrilateral
$ ./a.out
q⏎
4⏎
1.0 2.0⏎
3.0 2.0⏎
3.0 4.0⏎
1.0 4.0⏎
q
4
1 + 2i
3 + 2i
3 + 4i
1 + 4i
^Z⏎
Circle
$ ./a.out
c⏎
2⏎
1.0 2.0⏎
3.0 4.0⏎
c
2
1 + 2i
3 + 4i
^Z⏎
Polygon
$ ./a.out
p⏎
5⏎
1.0 0.0⏎
2.0 1.1⏎
-3.0 -2.2⏎
4.3 2.1⏎
-1.2 3.4⏎
p
5
1
2 + 1.1i
-3 - 2.2i
4.3 + 2.1i
-1.2 + 3.4i
^Z⏎
Multiple Objects
$ ./a.out
t⏎
3⏎
1.0 2.0⏎
3.0 4.0⏎
5.0 0.0⏎
t
3
1 + 2i
3 + 4i
5
q⏎
4⏎
1.0 2.0⏎
3.0 2.0⏎
3.0 4.0⏎
1.0 4.0⏎
q
4
1 + 2i
3 + 2i
3 + 4i
1 + 4i
c⏎
2⏎
1.0 2.0⏎
3.0 4.0⏎
c
2
1 + 2i
3 + 4i
p⏎
5⏎
1.0 0.0⏎
2.0 1.1⏎
-3.0 -2.2⏎
4.3 2.1⏎
-1.2 3.4⏎
p
5
1
2 + 1.1i
-3 - 2.2i
4.3 + 2.1i
-1.2 + 3.4i
^Z⏎
Pseudo Code
#include <iostream>
#include <string>
#include <sstream>
#include <cmath>
#include <vector>
using namespace std;
class Geometry_Comp;
class Complex
{
private:
// data members
// save the real and imaginary parts of the complex number
// with `double` precision
double m_real;
double m_imag;
public:
// Constructor, initializes real and imaginary parts
Complex(const double &arg_real = 0.0, const double &arg_imag = 0.0);
// Copy constructor
Complex(const Complex &arg_c);
// assignment operator
Complex &operator=(const Complex &arg_c);
// cout `<<` operator for print complex number
// note: be careful about the format of output
friend ostream &operator<<(ostream &arg_os, const Complex &arg_c);
// cin `>>` operator for input complex number
// note: use `>>` to parse the string to double,
// use `istream::fail()` to check the conversion is successful
// and use `istream::eof()` to check the is parse to the end of line
friend istream &operator>>(istream &arg_is, Complex &arg_c);
// friend class
friend class Geometry_Comp;
};
class Geometry_Comp
{
protected:
// data members
vector<Complex> m_comp_array;
public:
// Constructor, initializes the array
Geometry_Comp(const unsigned int &arg_num_of_vertex = 0);
// Copy constructor
Geometry_Comp(const Geometry_Comp &arg_gc);
// assignment operator
Geometry_Comp &operator=(const Geometry_Comp &arg_gc);
// print the geometry
virtual void print_geometry();
// parse the cin to the geometry
virtual void parse_geometry(istream &arg_is);
// set the geometry
void set_geometry(const vector<Complex> &arg_comp_array);
// get the geometry array
vector<Complex> get_geometry_array();
};
class Triangle_Comp : public Geometry_Comp
{
public:
// Constructor, initializes the array
Triangle_Comp();
// Copy constructor
Triangle_Comp(const Triangle_Comp &arg_tc);
// assignment operator
Triangle_Comp &operator=(const Triangle_Comp &arg_tc);
// print the geometry
void print_geometry();
// parse the cin to the geometry
void parse_geometry(istream &arg_is);
};
const unsigned triangle_num_of_vertex = 3;
class Quadrilateral_Comp : public Geometry_Comp
{
public:
// Constructor, initializes the array
Quadrilateral_Comp();
// Copy constructor
Quadrilateral_Comp(const Quadrilateral_Comp &arg_qc);
// assignment operator
Quadrilateral_Comp &operator=(const Quadrilateral_Comp &arg_qc);
// print the geometry
void print_geometry();
// parse the cin to the geometry
void parse_geometry(istream &arg_is);
};
const unsigned quadrilateral_num_of_vertex = 4;
class Polygon_Comp : public Geometry_Comp
{
public:
// Constructor, initializes the array
Polygon_Comp();
// Copy constructor
Polygon_Comp(const Polygon_Comp &arg_pc);
// assignment operator
Polygon_Comp &operator=(const Polygon_Comp &arg_pc);
// print the geometry
void print_geometry();
// parse the cin to the geometry
void parse_geometry(istream &arg_is);
};
class Circle_Comp : public Geometry_Comp
{
public:
// Constructor, initializes the array
Circle_Comp();
// Copy constructor
Circle_Comp(const Circle_Comp &arg_cc);
// assignment operator
Circle_Comp &operator=(const Circle_Comp &arg_cc);
// print the geometry
void print_geometry();
// parse the cin to the geometry
void parse_geometry(istream &arg_is);
};
const unsigned circle_num_of_vertex = 2;
// error and exit
void error_and_exit()
{
cout << "Error: Invalid input" << endl;
exit(1);
}
// used for process the test cases, do not modify
int main()
{
string input;
Geometry_Comp *geo_ptr = 0;
while (getline(cin, input))
{
// check the geometry type
switch (input[0])
{
case 't':
geo_ptr = new Triangle_Comp();
break;
case 'q':
geo_ptr = new Quadrilateral_Comp();
break;
case 'p':
geo_ptr = new Polygon_Comp();
break;
case 'c':
geo_ptr = new Circle_Comp();
break;
}
// parse the cin to the geometry
geo_ptr->parse_geometry(cin);
// print the geometry
geo_ptr->print_geometry();
// delete the pointer
delete geo_ptr;
}
return 0;
}
Reference Code:
TA
#include <iostream>
#include <string>
#include <sstream>
#include <cmath>
#include <vector>
using namespace std;
class Geometry_Comp;
class Complex
{
private:
// data members
// save the real and imaginary parts of the complex number
// with `double` precision
double m_real;
double m_imag;
public:
// Constructor, initializes real and imaginary parts
Complex(const double &arg_real = 0.0, const double &arg_imag = 0.0);
// Copy constructor
Complex(const Complex &arg_c);
// assignment operator
Complex &operator=(const Complex &arg_c);
// cout `<<` operator for print complex number
// note: be careful about the format of output
friend ostream &operator<<(ostream &arg_os, const Complex &arg_c);
// cin `>>` operator for input complex number
// note: use `>>` to parse the string to double,
// use `istream::fail()` to check the conversion is successful
// and use `istream::eof()` to check the is parse to the end of line
friend istream &operator>>(istream &arg_is, Complex &arg_c);
// friend class
friend class Geometry_Comp;
};
class Geometry_Comp
{
protected:
// data members
vector<Complex> m_comp_array;
public:
// Constructor, initializes the array
Geometry_Comp(const unsigned int &arg_num_of_vertex = 0);
// Copy constructor
Geometry_Comp(const Geometry_Comp &arg_gc);
// assignment operator
Geometry_Comp &operator=(const Geometry_Comp &arg_gc);
// print the geometry
virtual void print_geometry();
// parse the cin to the geometry
virtual void parse_geometry(istream &arg_is);
// set the geometry
void set_geometry(const vector<Complex> &arg_comp_array);
// get the geometry array
vector<Complex> get_geometry_array();
};
class Triangle_Comp : public Geometry_Comp
{
public:
// Constructor, initializes the array
Triangle_Comp();
// Copy constructor
Triangle_Comp(const Triangle_Comp &arg_tc);
// assignment operator
Triangle_Comp &operator=(const Triangle_Comp &arg_tc);
// print the geometry
void print_geometry();
// parse the cin to the geometry
void parse_geometry(istream &arg_is);
};
const unsigned triangle_num_of_vertex = 3;
class Quadrilateral_Comp : public Geometry_Comp
{
public:
// Constructor, initializes the array
Quadrilateral_Comp();
// Copy constructor
Quadrilateral_Comp(const Quadrilateral_Comp &arg_qc);
// assignment operator
Quadrilateral_Comp &operator=(const Quadrilateral_Comp &arg_qc);
// print the geometry
void print_geometry();
// parse the cin to the geometry
void parse_geometry(istream &arg_is);
};
const unsigned quadrilateral_num_of_vertex = 4;
class Polygon_Comp : public Geometry_Comp
{
public:
// Constructor, initializes the array
Polygon_Comp();
// Copy constructor
Polygon_Comp(const Polygon_Comp &arg_pc);
// assignment operator
Polygon_Comp &operator=(const Polygon_Comp &arg_pc);
// print the geometry
void print_geometry();
// parse the cin to the geometry
void parse_geometry(istream &arg_is);
};
class Circle_Comp : public Geometry_Comp
{
public:
// Constructor, initializes the array
Circle_Comp();
// Copy constructor
Circle_Comp(const Circle_Comp &arg_cc);
// assignment operator
Circle_Comp &operator=(const Circle_Comp &arg_cc);
// print the geometry
void print_geometry();
// parse the cin to the geometry
void parse_geometry(istream &arg_is);
};
const unsigned circle_num_of_vertex = 2;
// error and exit
void error_and_exit()
{
cout << "Error: Invalid input" << endl;
exit(1);
}
// Complex class implementation
// Constructor, initializes real and imaginary parts
// hint: as like as `modify` function in examples
// but use default constructor to implement
Complex::Complex(const double &arg_real, const double &arg_imag)
: m_real(arg_real), m_imag(arg_imag)
{
}
// Copy constructor
Complex::Complex(const Complex &arg_c)
: m_real(arg_c.m_real), m_imag(arg_c.m_imag)
{
}
// assignment operator
Complex &Complex::operator=(const Complex &arg_c)
{
if (this == &arg_c) // self-assignment
return *this;
m_real = arg_c.m_real;
m_imag = arg_c.m_imag;
return *this;
}
// cout `<<` operator for print complex number
// note: be careful about the format of output
ostream &operator<<(ostream &arg_os, const Complex &arg_c)
{
if (arg_c.m_imag > 0)
{
arg_os << arg_c.m_real << " + " << arg_c.m_imag << "i";
}
else if (arg_c.m_imag < 0)
{
arg_os << arg_c.m_real << " - " << -arg_c.m_imag << "i";
}
else
{
arg_os << arg_c.m_real;
}
return arg_os;
}
// cin `>>` operator for input complex number
// note: be careful about the format of input
istream &operator>>(istream &arg_is, Complex &arg_c)
{
double input_real, input_imag;
arg_is >> input_real;
if (arg_is.fail())
{
error_and_exit();
}
arg_is >> input_imag;
if (arg_is.fail() || !arg_is.eof())
{
error_and_exit();
}
arg_c.m_real = input_real;
arg_c.m_imag = input_imag;
return arg_is;
}
// Geometry_Comp class implementation
// Constructor, initializes the array
Geometry_Comp::Geometry_Comp(const unsigned int &arg_num_of_vertex)
: m_comp_array(arg_num_of_vertex)
{
}
// Copy constructor
Geometry_Comp::Geometry_Comp(const Geometry_Comp &arg_gc)
: m_comp_array(arg_gc.m_comp_array)
{
}
// assignment operator
Geometry_Comp &Geometry_Comp::operator=(const Geometry_Comp &arg_gc)
{
if (this == &arg_gc) // self-assignment
return *this;
m_comp_array = arg_gc.m_comp_array;
return *this;
}
// print the geometry
void Geometry_Comp::print_geometry()
{
cout << "not implemented" << endl;
}
// parse the cin to the geometry
void Geometry_Comp::parse_geometry(istream &arg_is)
{
cout << "not implemented" << endl;
}
// set the geometry
void Geometry_Comp::set_geometry(const vector<Complex> &arg_comp_array)
{
m_comp_array = arg_comp_array;
}
// get the geometry array
vector<Complex> Geometry_Comp::get_geometry_array()
{
return m_comp_array;
}
// Triangle_Comp class implementation
// Constructor, initializes the array
Triangle_Comp::Triangle_Comp()
: Geometry_Comp(triangle_num_of_vertex)
{
}
// Copy constructor
Triangle_Comp::Triangle_Comp(const Triangle_Comp &arg_tc)
: Geometry_Comp(arg_tc)
{
}
// assignment operator
Triangle_Comp &Triangle_Comp::operator=(const Triangle_Comp &arg_tc)
{
if (this == &arg_tc) // self-assignment
return *this;
Geometry_Comp::operator=(arg_tc);
return *this;
}
// print the geometry
void Triangle_Comp::print_geometry()
{
cout << "t" << endl;
cout << m_comp_array.size() << endl;
for (int i = 0; i < triangle_num_of_vertex; i++)
{
cout << m_comp_array[i] << endl;
}
}
// parse the cin to the geometry
void Triangle_Comp::parse_geometry(istream &arg_is)
{
string temp;
getline(arg_is, temp); // get the vertex number
int vertex_num = stoi(temp);
if (vertex_num != triangle_num_of_vertex)
{
error_and_exit();
}
for (int i = 0; i < vertex_num; i++)
{
getline(arg_is, temp);
stringstream ss(temp);
Complex c;
ss >> c;
if (ss.fail())
{
error_and_exit();
}
m_comp_array[i] = c;
}
}
// Quadrilateral_Comp class implementation
// Constructor, initializes the array
Quadrilateral_Comp::Quadrilateral_Comp()
: Geometry_Comp(quadrilateral_num_of_vertex)
{
}
// Copy constructor
Quadrilateral_Comp::Quadrilateral_Comp(const Quadrilateral_Comp &arg_qc)
: Geometry_Comp(arg_qc)
{
}
// assignment operator
Quadrilateral_Comp &Quadrilateral_Comp::operator=(const Quadrilateral_Comp &arg_qc)
{
if (this == &arg_qc) // self-assignment
return *this;
Geometry_Comp::operator=(arg_qc);
return *this;
}
// print the geometry
void Quadrilateral_Comp::print_geometry()
{
cout << "q" << endl;
cout << m_comp_array.size() << endl;
for (int i = 0; i < quadrilateral_num_of_vertex; i++)
{
cout << m_comp_array[i] << endl;
}
}
// parse the cin to the geometry
void Quadrilateral_Comp::parse_geometry(istream &arg_is)
{
string temp;
getline(arg_is, temp); // get the vertex number
int vertex_num = stoi(temp);
if (vertex_num != quadrilateral_num_of_vertex)
{
error_and_exit();
}
for (int i = 0; i < vertex_num; i++)
{
getline(arg_is, temp);
stringstream ss(temp);
Complex c;
ss >> c;
if (ss.fail())
{
error_and_exit();
}
m_comp_array[i] = c;
}
}
// Polygon_Comp class implementation
// Constructor, initializes the array
Polygon_Comp::Polygon_Comp()
: Geometry_Comp()
{
}
// Copy constructor
Polygon_Comp::Polygon_Comp(const Polygon_Comp &arg_pc)
: Geometry_Comp(arg_pc)
{
}
// assignment operator
Polygon_Comp &Polygon_Comp::operator=(const Polygon_Comp &arg_pc)
{
if (this == &arg_pc) // self-assignment
return *this;
Geometry_Comp::operator=(arg_pc);
return *this;
}
// print the geometry
void Polygon_Comp::print_geometry()
{
cout << "p" << endl;
cout << m_comp_array.size() << endl;
for (int i = 0; i < m_comp_array.size(); i++)
{
cout << m_comp_array[i] << endl;
}
}
// parse the cin to the geometry
void Polygon_Comp::parse_geometry(istream &arg_is)
{
string temp;
getline(arg_is, temp); // get the vertex number
int vertex_num = stoi(temp);
if (vertex_num < triangle_num_of_vertex)
{
error_and_exit();
}
m_comp_array.resize(vertex_num);
for (int i = 0; i < vertex_num; i++)
{
getline(arg_is, temp);
stringstream ss(temp);
Complex c;
ss >> c;
if (ss.fail())
{
error_and_exit();
}
m_comp_array[i] = c;
}
}
// Circle_Comp class implementation
// Constructor, initializes the array
Circle_Comp::Circle_Comp()
: Geometry_Comp(circle_num_of_vertex)
{
}
// Copy constructor
Circle_Comp::Circle_Comp(const Circle_Comp &arg_cc)
: Geometry_Comp(arg_cc)
{
}
// assignment operator
Circle_Comp &Circle_Comp::operator=(const Circle_Comp &arg_cc)
{
if (this == &arg_cc) // self-assignment
return *this;
Geometry_Comp::operator=(arg_cc);
return *this;
}
// print the geometry
void Circle_Comp::print_geometry()
{
cout << "c" << endl;
cout << m_comp_array.size() << endl;
for (int i = 0; i < circle_num_of_vertex; i++)
{
cout << m_comp_array[i] << endl;
}
}
// parse the cin to the geometry
void Circle_Comp::parse_geometry(istream &arg_is)
{
string temp;
getline(arg_is, temp); // get the vertex number
int vertex_num = stoi(temp);
if (vertex_num != circle_num_of_vertex)
{
error_and_exit();
}
for (int i = 0; i < vertex_num; i++)
{
getline(arg_is, temp);
stringstream ss(temp);
Complex c;
ss >> c;
if (ss.fail())
{
error_and_exit();
}
m_comp_array[i] = c;
}
}
// used for process the test cases, do not modify
int main()
{
string input;
Geometry_Comp *geo_ptr = 0;
while (getline(cin, input))
{
// check the geometry type
switch (input[0])
{
case 't':
geo_ptr = new Triangle_Comp();
break;
case 'q':
geo_ptr = new Quadrilateral_Comp();
break;
case 'p':
geo_ptr = new Polygon_Comp();
break;
case 'c':
geo_ptr = new Circle_Comp();
break;
default:
error_and_exit();
}
// parse the cin to the geometry
geo_ptr->parse_geometry(cin);
// print the geometry
geo_ptr->print_geometry();
// delete the pointer
delete geo_ptr;
}
return 0;
}